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ABSTRACT 

A thermoelastic analysis is a multi-step process with 
multiple disciplines involved where each discipline 
uses its own mathematical model. Each of the 
models involved is a source of uncertainties and 
errors. In addition, there are also the errors coming 
from the data transfer and transformation between 
the different analysis steps.  

To account for these uncertainties, factors of safety, 
can be used. Although this approach is pragmatic, it 
suffers from a lack of reliability basis and the values 
are often ambiguous. 

Stochastic approaches are powerful for quantifying 
ranges in the responses due to variations of 
parameters. The Monte Carlo Simulation (MCS) 
method is a well-known method for this purpose, but 
it is computationally expensive. A promising 
alternative method is the Rosenblueth Two-point 
estimate method, that requires far less 
computational effort.  

This paper explains the application of the 
Rosenblueth method for estimation of the 
uncertainty of thermoelastic prediction. This 
explanation is supported with examples. 

1 SOURCES OF UNCERTAINTIES IN 
THERMOELASTIC ANALYSIS AND USE OF 
FACTORS OF SAFETY 

The thermoelastic analysis process is a chain of 
analysis steps, in which each step introduces 
uncertainties. A common way to deal with above 
uncertainties is to introduce factors similar to the 
ECSS "Structural factors of safety for spaceflight 
hardware" [6]. 

In the thermal model typical parameters with 
uncertainty are thermo-optical properties and 
contact conductance values. Also, the thermal 
environment may have some variations from the 
assumed nominal environment. In addition, the 
reflection of solar and infra-red radiation from 
surrounding objects on the spacecraft may cause 
uncertainties in the heat radiation received by the 

structure under consideration. The ECSS “Thermal 
analysis handbook” [8] provides an overview of 
potential uncertainty sources. 

The uncertainties in the thermal model can be 
covered with the thermal model factor 𝐾௠௧. This 
factor will then act as a scaling factor for the 
thermoelastic (TE) responses, like stresses and 
displacements. Similar to the thermal model factor, 
a thermal environment factor, 𝐾௘௧, may be 
introduced that also scales the thermoelastic 
responses. 

Temperature mapping from the thermal model to 
the structural model is the second step in the 
analysis chain. A mismatch in the level of detail 
between the thermal and structural model can be a 
source of errors. This source can be removed to a 
large extent by putting the right amount effort on 
aligning the models. Also, a mismatch between 
mesh boundaries, can cause partial overlap of 
elements by thermal nodes. With some effort this 
problem can be minimised, but not always removed. 
Finally, the selected temperature mapping method 
can be a source of uncertainties by itself. A factor of 
safety, 𝐾௠௔௣, for the temperature mapping process 
can be introduced to cover the uncertainties for this 
analysis step. 

The structural model, like the thermal model, uses a 
large amount of material properties and geometrical 
dimensions which all have their own variation 
around their nominal value. The factor that could 
cover the uncertainties in the structural 
thermoelastic model can be 𝐾௠௦. 

In principle, a factor of safety for the performance 
evaluation of the instrument could also be 
introduced. This aspect is considered outside the 
scope of this paper. 

The cumulative effect of these factors could be 
presented as a single thermoelastic factor of safety 
𝐾௧௘ 

𝐾௧௘ ൌ 𝐾௠௧𝐾௘௧𝐾௠௔௣𝐾௠௦ (1) 

Like with the factors 𝐾௠and 𝐾௣, as proposed by the 
ECSS [6], there is no reliability basis for quantifying 
the previously introduced factors of safety. The 
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chosen values then rely on experience, which is not 
always available. The factors may also be the result 
of a compromise between customer and contractor. 
As a consequence, the values have a high level of 
ambiguity.  

Despite that factors of safety are meant to introduce 
a level of conservatism in the results, they actually 
generate a false sense of safety. 

Although the use factors of safety is a pragmatic 
approach, it also has some limitations and brings 
additional uncertainties. For those reasons in the 
next section an alternative to the approach with 
factors of safety is discussed to deal with 
uncertainties. Different from the factors of safety 
approach, an efficient stochastic method is 
described, that allows to estimate the uncertainty in 
the results based on the mean and standard 
deviation of physical parameters in the models. 

2 UNCERTAIN DESIGN VARIABLES, 
PROBABILISTIC APPROACH 

In section 1 the traditional way to cover uncertainties 
in the environment and modelling parameters by 
factors of safety was discussed. In this section 
uncertainties in applied loads and design variables 
are considered as stochastic or random 
parameters. 

Stochastic design variables may have different 
distribution types, such as normal and log-normal. 
[2,3]. In cases where the distribution is not known, a 
uniform distribution 𝑈ሺ𝑎, 𝑏ሻ with a specified interval 
ሺ𝑎, 𝑏ሻ could be used. 

The outcomes of the probabilistic analysis are 
statistical values, e.g. the mean , the standard 
deviation . 

In this paper two probabilistic analysis methods are 
discussed: 

 Monte Carlo Simulation (MCS) [2,3] 
 Rosenblueth’s 2𝑘 ൅ 1 Point Estimate Method 

(PEM) [1,2,5] 

The emphasis of this paper is on the latter method, 
that is believed to be an interesting alternative for 
the MCS method. The 2𝑘 ൅ 1 PEM method can be 
considered as computationally light method that has 
the potential to make stochastic assessments 
possible within projects with high schedule 
constraints.  

2.1 Monte Carlo Simulation (MCS) 

To assess the stochastic properties of the response 
variables with the MCS method a (very) large 
number of simulations runs have to be done, 
sampling the design variables and loads 
stochastically. The following steps must be done: 

                                                      
1 Note that for the generation of random numbers it is not verified 
whether a certain combination of design variable values has 

 Definition of reliable mathematical models 
 Selection of stochastic design variables 
 Generation of memoryless1 random numbers 

in conjunction with the selected distribution 
 Evaluation of stochastic response variables 
 Statistical analysis 

The accuracy of the MCS analysis will improve with 
the number analysis loops. After all evaluations of 
the response variables, the mean , the standard 
deviation , the distribution, minimum and 
maximum values can be estimated. 

MCS is easy to implement but is, in general, 
computationally expensive. 

2.2 Rosenblueth’s 𝟐𝒌 ൅ 𝟏 Point Estimate 
Method (PEM) 

With the use of the Rosenblueth point estimates for 
first and second order probability moments [1,2,5], 
estimates of the mean and the variance of the 
stochastic response variable in combination with a 
mathematical model can be computed. The 
interesting feature of this method is that, when the 
number of stochastic design variables is 𝑘, the 
number of analysis runs, for computation of the 
estimates is limited to 2𝑘 ൅ 1. 

The response is considered to be a function of all 
the design variables: 

𝑌 ൌ 𝑌ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋௞ሻ, (2) 

with 𝑋௡ሺ𝑛 ∈ ሾ1, 𝑘ሿሻ being stochastic design 
variables. Each design variable 𝑋௡ has a mean 
value 𝜇௡ and standard deviation 𝜎௡. To produce a 
response value 𝑌 a single analysis run is required. 

The 2𝑘 ൅ 1 response values, thus analysis runs, are 
the following: 

 𝑌଴ ൌ 𝑌ሺ𝜇ଵ, 𝜇ଶ, … , 𝜇௞ሻ: The nominal or reference 
value of the response computed by using the 
mean values 𝜇 for all 𝑘 stochastic design 
variables. 

 𝑌௡௠ ൌ 𝑌ሺ𝜇ଵ, 𝜇ଶ, … , 𝜇௡ െ 𝜎௡, … 𝜇௞ሻ: The response 
resulting from k analyses in which all values of 
the response variables are kept at their mean 
value 𝜇, except the 𝑛௧௛ stochastic design 
variable that is set to the value 𝜇௡ െ 𝜎௡ (𝑚 means 
minus) 

 𝑌௡௣ ൌ 𝑌ሺ𝜇ଵ, 𝜇ଶ, … , 𝜇௡ ൅ 𝜎௡, … 𝜇௞ሻ: The response 
resulting from k analyses in which all values of 
the response variables are kept at their mean 
value 𝜇, except the 𝑛௧௛ stochastic design 
variable that is set to the value 𝜇௡ ൅ 𝜎௡ (𝑝 means 
plus) 

The mean 𝑌௡ of two-point estimates 𝑌௡௠ and 𝑌௡௣ is 
given by, 

been used before. That is why the generation of random numbers 
is called memoryless. 
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𝑌௡ ൌ
𝑌௡௠ ൅ 𝑌௡௣

2
, 𝑛 ൌ 1,2, ⋯ 𝑘 (3) 

and the coefficient of variance 𝑉௡ can be obtained 
by, 

𝑉௡ ൌ
𝑌௡௣ െ 𝑌௡௠

𝑌௡௣ ൅ 𝑌௡௠
, 𝑛 ൌ 1,2, … 𝑘 (4) 

Assuming all stochastic design variables are 
uncorrelated and non-skew the following estimates 
of the mean 𝑌ത ൌ 𝜇௬ and the coefficient of variance 
𝑉௬ ൌ 𝜎௬/𝜇௬ can be calculated with 

𝑌ത

𝑌௢
ൌ ෑ

𝑌௡

𝑌௢

௞

௡ୀଵ

 (5) 

and  

1 ൅ 𝑉௬
ଶ ൌ ෑሺ1 ൅ 𝑉௡

ଶሻ
௞

௡ୀଵ

 (6) 

The values of 𝑉௡  of equation (4) can be used as a 
sensitivity value of the design variables on the 
response variable(s). When all the coefficients of 
variation are normalised relative to the coefficient of 
variation for the response value, individual 
sensitivity index values can be obtained, 

𝑆௡ ൌ
௏೙

௏ೊ
, (7) 

The sensitivity index values can provide useful 
information in identifying the parameters driving the 
uncertainty. 

It should be noted, that the PEM is based on a 
truncated Taylor’s series. For this reason, 
Rosenblueth stresses several times in his paper [1] 
that the dispersion of the stochastic design 
variables should not be “too large”. Rosenblueth is 
not specific about the quantification of "too large". 
This constraint may indicate that the accuracy has 
a sensitivity for the magnitude of the dispersion of 
the stochastic design variable. 

3 DEMONSTSTRATION CASES 

In the following sections two demonstration cases 
are presented with the objective to show the 
practical use of the 2𝑘 ൅ 1 PEM method. The first 
example is a more realistic example that shows well 
the procedure to a design problem. The second 
example shows what can be done when limitations 
of the 2𝑘 ൅ 1 PEM method are hit.  

3.1 Demo case 1: Simplified optical bench 
model 

The purpose of this example was to investigate the 
effects that uncertainties in several parameters and 
modelling methods could introduce in an optical 
instrument’s performance under TE loads. 

3.1.1. Scope and limitations 

In this investigation, various TE analyses were 
carried out. These TE analyses had to describe the 

performance of the optical bench in a thermal 
vacuum facility and provide deeper understanding 
on the effects that the uncertainty in several 
modelling parameters and modelling methods had 
on the results. Due to the random behaviour of 
uncertainties, the parameters under study were 
treated as stochastic variables. The TE analyses, 
therefore, became also statistical analyses. To 
perform these statistical analyses, both the Monte 
Carlo Simulation method and the 2𝑘 ൅ 1 PEM 
method, described previously, were used, and are 
compared at the end of it. 

It is important to acknowledge that this example had 
several limitations. First, the thermal and structural 
models were simplified, inherited models from past 
studies [10]. Therefore, it is important to notice that 
they did not represent a real optical instrument, but 
they have features that can be found in realistic 
models. As they are theoretical models, another 
limitation is that there was no test data to compare 
the results with. This limits the conclusions that can 
be based on data trends. The last limitation is that 
only steady state cases were analysed and no 
transient cases. 

3.1.2. Model description 

The models used were based on features of 
common optical system payloads. As they were 
inherited from a previous study, in order to improve 
the models’ suitability for the current study, some 
modifications were introduced. 

The models can be subdivided into the parts shown 
in Figure 1. The main optical path in the instrument 
includes the front opening and its baffle, both 
mirrors and the focal plane assembly (FPA). 

 

Figure 1: Optical payload model overview. 

To avoid thermal gradients within the instrument 
everything except for the bipods was made of Al 
6061-T6. The bipods were made of Ti-6Al-4V in 
order to thermally decouple the instrument from the 
spacecraft (SC) deck. 

As shown in Figure 2, the outside surface of the 
GMM was covered in MLI, except for the radiators. 
To simplify the model, the volume of the different 
dissipating units has not been modelled. Therefore, 
in this case, the inside of each shell acted as the 
thermal node (TN) for the aluminium structure or 
mirrors and the external surface of the shell acted 
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as the TN for the MLI or radiators. 

 

 

Figure 2: GMM thermal model components 
showing the optical properties of the optical 

payloads. 

All the radiative conductors were automatically 
computed using ESATAN except for the conductors 
between the structure and the last MLI layer. These 
manually computed conductors were modelled 
using a tuned parameter: the effective emissivity 
(𝜀∗). This parameter measures the insulating 
efficiency of the MLI. 

The linear conductors between TNs were generated 
using the automatic GL generation module from the 
SINAS software [10]. The use of this method 
introduces repeatability and reproducibility into the 
conductors as it removes the human experience 
factor from the level of accuracy of the conductors. 

Figure 3 shows a 3D view of the FE model used in 
the structural part of the TE analysis. The rotation of 
both mirrors was chosen as a representative 
performance parameter. In this case, they were 
computed using an RBE3 element. 

 

Figure 3: FE model 3 view. 

3.1.3. Uncertain parameters and methods 

For this study, one property from both the thermal 
and structural models have been treated as design 
variables. 

From the thermal model, 𝜀∗ was chosen for this 
study due to the high degree of uncertainty that it 
commonly has in thermal analyses. From the 
structural model, the aluminium’s CTE was chosen 
as the design parameter due to the CTE’s 
importance in TE analyses. 

As the models in this example are only theoretical, 
there is no data to determine the probabilistic 
distribution of these variables. Due to this issue, 
several assumptions were made. First, both random 
variables were modelled using a normal distribution. 
Due to the chosen distribution, to keep the random 
samples realistic the tails of these had to be cut-off 
at 3𝜎. 

The mean value (µ) of 𝜀∗ was then modelled using 
a typical value. To estimate the standard deviation 
the value suggested by the ECSS thermal 
handbook was taken. The ECSS guidelines [8] 
recommend applying an uncertainty of ±50% for the 
MLI's effective emissivity before testing. Therefore, 
0.5µ was taken as 3𝜎. 

The CTE value for aluminium from the MIL-HDBK-
5J handbook [11] was used as the mean value for 
the CTE’s distribution. Yet the handbook does not 
provide a standard deviation value for its 
measurement; therefore, an extra assumption was 
made. In this case a large value of ±15% for the 
uncertainty of the aluminium's CTE value was 
chosen. As a result, 0.15µ was taken as 3𝜎. It is 
acknowledged that this value is extremely high for a 
material such as aluminium, but it is not rare in other 
materials. 

Table 1 summarizes the properties of these two 
distributions. 

Table 1 Statistical properties of the stochastic 
variables. 

Parameter Units µ 3σ 
𝜀∗ - 4.0E-2 2.0E-2 
CTE m/m/degC 2.360E-5 0.354E-5 

 

To consider uncertainty in TE methods, all the 
studies were performed applying two common 
temperature mapping methods: centre point 
temperature (CPT) conductive interpolation 
method, and the prescribed average temperature 
method (PAT) (SINAS) method. A detailed 
description of these methods can be found in [9]. 
This was done to assess the influence of each 
method on the results of the analyses. As this is not 
the main focus of the current paper, they are not 
described further. 

3.1.4. Analysis methods 

Three different Monte Carlo simulations were 
carried out in this project: 

 Analysis with a random CTE 
 Analysis with a random 𝜀∗ 
 Analysis with a random CTE and 𝜀∗ 

This section only details the method that was 
followed for the last analysis as it is a combination 
of the previous two. 

First, the random parameters were sampled. When 
doing so, it was considered that a single batch of 
aluminium was used to produce the structure. This 
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meant that only 1 CTE sample had to be taken per 
run. At the same time, three random samples of the 
𝜀∗ were taken for three different locations. This was 
done to account for the dependence of 𝜀∗ on the 
packaging of the MLI [12]. Therefore, in total, 4 
random samples were computed for the design 
variables per Monte Carlo run. 

After performing the sampling, for each run, a 
thermal analysis was computed to consider the 
changes in 𝜀∗. The new temperature field was then 
mapped onto the structural model using the 2 
different mapping methods. Following the 
temperature mapping, a structural analysis was 
computed on the FE structure and the results for the 
performance parameters measured. 

This process was carried out in sets of 50 cases. 
After each set, the mean and standard deviation of 
the performance parameters were computed. When 
the mean and standard deviations converged within 
1% and 5%, respectively, the process was stopped. 

After the Monte Carlo simulation, the 2𝑘 ൅ 1 PEM 
method analysis was performed following the 
instructions given in section 2.2. In this case, as 
there were 4 different design parameters (3 different 
𝜀∗  and 1 CTE) a total of 9 cases were run. 

3.1.5. Results 

Due to the non-linearity of the radiative effects in the 
thermal analyses it could not be directly 
extrapolated that given the normal distribution of the 
random samples the results would also be normally 
distributed. Therefore, a Jarque-Bera (JB) normality 
test was computed on the distribution of the 
performance parameters [13]. 

As the Monte Carlo simulations showed little 
skewness and that they passed the normality test, 

with a 95% confidence level, the results from the 
2𝑘 ൅ 1 PEM method were also assumed to belong 
to a normal population. 

This assumption allowed us to represent both 
distributions together. The results of both 
simulations are displayed in Figure 4. This figure 
shows that the 2𝑘 ൅ 1 PEM method can capture the 
behaviour of the performance parameters just as 
the Monte Carlo Simulations do. Table 2 and Table 
3 summarise the difference between the estimators 
of both methods. 

These relative differences use the results from the 
Monte Carlo method as the baseline case, 

ΔY ൌ
Yெ௢௡௧௘஼௔௥௟௢ െ Yோ௢௦௘௡௕௟௨௘௧௛

Yெ௢௡௧௘஼௔௥௟௢

 (8) 

ΔSଢ଼ ൌ
𝑆௒ெ௢௡௧௘஼௔௥௟௢ െ σ௒ோ௢௦௘௡௕௟௨௘௧௛

𝑆௒ெ௢௡௧௘஼௔௥௟௢

 (9) 

The results show how the 2𝑘 ൅ 1 PEM method 
estimated the mean of the outputs' distribution with 
great precision. The percentage difference between 
the mean values was always within the relative 
width (wr) of the confidence interval for the 
baseline’s mean. 

It is also interesting to note that, the estimate for the 
standard deviation of the population does not show 
the same level of precision. 

Still, it is important to mention that all the results 
computed with the 2𝑘 ൅ 1 PEM method fall within 
the confidence intervals of the Monte Carlo 
simulation results. 

 

Table 2 Percentage difference in the distribution estimators between the results obtained with the Monte 
Carlo simulation method and the Rosenblueth 2k+1 estimates method. (Rotation around the Y axis) 

 

Table 3 Percentage difference in the distribution estimators between the results obtained with the Monte 
Carlo simulation method and the Rosenblueth 2k+1 estimates method. (Rotation around the Z axis) 

 

 Mirror 1 Mirror 2 
Estimator SINAS (PAT) Conductive (CPT) SINAS (PAT) Conductive (CPT) 
ΔY [%] 0.151 0.146 0.076 0.072 
ΔSଢ଼ [%] 6.178 5.691 5.007 4.288 

 Mirror 1 Mirror 2 
Estimator SINAS (PAT) Conductive (CPT) SINAS (PAT) Conductive (CPT) 
ΔY [%] 0.096 0.096 0.003 0.007 
ΔSଢ଼ [%] 4.824 5.110 2.055 1.309 



6 

 

Figure 4: Overlap of the CTE, effective emissivity Monte Carlo simulation and the 2𝑘 ൅ 1 PEM method 
(Rosenblueth) estimates results. 

 

3.1.6. Conclusions 

Several conclusions can be extracted from the 
results. 

Firstly, the 2𝑘 ൅ 1 PEM method shows a great level 
of precision when predicting the mean value of the 
population for this case. The results from the 2𝑘 ൅ 1 
PEM method, all fall within less than 0.2% of the 
mean computed through the Monte Carlo 
Simulation method. It is important to mention that 
this was achieved using a fraction of the 
computational time. Furthermore, even though the 
variability of the population shows a lower precision 
it still falls within the 95% confidence intervals from 
the Monte Carlo Simulation results. This means, 
that the 2𝑘 ൅ 1 PEM method could have been used 
with great precision to assess the effects of random 
uncertainties in this case. 

It is also important to note, that as seen in the 
results, the mapping methods can heavily influence 
the estimated means of our distributions. As this 
was not the purpose of this paper, this is not 
considered further. 

3.2 Demo case 2: PANELSAT 

3.2.1 Model description 

PANELSAT is a fictitious satellite which consists of 
only a rectangular sandwich panel. The example 
with PANELSAT aims to show the application of the 
Point Estimates Method (PEM) of Rosenblueth of 
section 2.2 in combination with the Monte Carlo 
Simulation method (MCS) of which the results are 
used as reference. It should be understood that a 
single panel orbiting around a planet has no 
resemblance with any of the current spacecraft. 

The sandwich panel is 1 × 2 m and has a thickness 
of 5 cm. The sandwich has aluminium face sheets 
of 1 mm thickness and aluminium honeycomb core 
material. 

The MSC.Nastran finite element model is presented 
in Figure 5 The face sheets and edges of the panel 
are modelled with linear shell elements (CQUAD4). 
The core is modelled with linear solid elements 
(CHEXA). The shell elements are coinciding with 
the free faces of the solid elements representing the 
honeycomb core. A perfect joint between face 
sheets and core is assumed and the adhesive 
between core and face sheets is omitted.  
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Figure 5 PANELSAT FE model with boundary 

conditions indicated. Lower part: Detail showing 
the high through thickness mesh resolution. 

The panel is orbiting around Earth in a polar orbit 
with the +Y side of the panel pointing in the nadir 
direction. 

 
Figure 6 PANELSAT orbiting around Earth with +Y 

axis nadir pointing. 

An infrared emissivity of 𝜀 ൌ 0.5 (-) is used for the 
+Y side and 𝜀 ൌ 0.8  (-) is used for the remaining 
surfaces. The solar absorptivity for the +Y side is 
𝛼 ൌ 0.5 (-) and 𝛼 ൌ 0.2 (-) for the remaining 
surfaces. The edges have the same thermo-optical 
properties as the zenith surface. 

In the simulation process for this example, the 
conductors between thermal nodes are computed 
with the method based on the PAT relations as 
explained in [7]. 

3.2.2 Nominal results 

It is assumed that the models that are used for this 
example have gone successfully through the 
convergence verification. 

As a result of the changing orientation to the sun in 
combination with entry and exit of eclipse, the 
temperature field is constantly changing with time 
with corresponding changes in deformation. The 
translation of the mid-point of the +Z edge of the 
panel is (for the sake of the example) considered 
important for the performance of PANELSAT. This 
translation is relative to the clamped boundary 
condition at the -Z side of the panel.  

In Figure 7 the variation of the tip displacement over 
two orbits is visualised together with the 
temperature evolution at the middle of the panel at 
the two opposite face sheets at corresponding 

moments in time. The figure shows strong variations 
in displacement as function of time. The 
displacements vary between -0.195 mm and -1.25 
mm. The steep slopes in the displacement curves 
coincide with moments of increased temperature 
difference between top and bottom skin that occur 
during entry and exit of eclipse. In Figure 7 the 
coinciding of the moments of strong variation of the 
tip displacements and increased temperature 
difference between top (nadir) and bottom (zenith) 
face sheet is indicated with dotted lines. 

 
Figure 7 As a function of time the PANELSAT tip 

edge displacement together with the 
corresponding varying temperature field at the 

middle of the panel at opposite sides 

The tip-displacement evolution shows extreme 
deep and sharp notches. Convergence checks on 
the time step size have been executed. 
Nevertheless, these notches are numerically not 
convenient.  

The displacement field and the corresponding 
temperature field for one of the moments with 
highest deformation of the panel are presented in 
Figure 8 and Figure 9. 

3.2.3 Selection of responses and design variables 

For many instruments the peak-to-peak variation of 
the deformation is of interest, because it provides 
the range of deformation. In this example, the 
maximum and minimum tip displacement are taken 
for that reason as performance results and the 
influence of stochastic design variables on the 
extreme displacement values are assessed. 
Therefore, in the following, the maximum and 
minimum values of the displacement over the 
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transients are presented as responses of interest. 
Note that in this case the maximum value 
represents the smallest negative displacement and 
minimum the highest negative displacement. The 
minimum and maximum values are obtained by 
scanning over the transient data and searching for 
the highest and lowest value of the Y-displacement 
of the mid-point at the +Z edge of the panel. 

 

Figure 8 Thermally induced displacements 

 

 

Figure 9 Temperature field at nadir side (top 
picture) and zenith side (bottom picture) of panel 
value within the dispersion range at the moment 

with the highest deformation. 

In this example the following model properties are 
taken as stochastic design variables: 

 𝑡௡௔ௗ௜௥ and 𝑡௭௘௡௜௧௛: The face sheet thicknesses of 
the nadir and zenith side of the panel. Both 
model properties are considered as independent 
stochastic design variables. These parameters 
affect the stiffness of the panel as well as the 
face sheet conductance and heat capacity. 

 𝑘௖௢௥௘: The conductivity of the core material, 
which affects both the through thickness and the 
in-plane conductance. 

 𝜀௡௔ௗ௜௥ and 𝜀௭௘௡௜௧௛: The infra-red emissivity of the 
two sides of the panel. Also, these parameters 
are considered independent stochastic design 
variables. The parameters affect the infra-red 
radiative heat exchange with the planet and 
deep space. It must be noted that when these 
parameters change, the corresponding infra-red 
reflectivity has to be changed accordingly. 

 𝛼௡௔ௗ௜௥ and 𝛼௭௘௡௜௧௛: The solar absorptivity of the 
two sides of the panel. Also, these parameters 
are considered independent stochastic design 
variables. The parameters affect the absorption 
of direct solar and albedo radiation. Also here the 
corresponding solar reflectivity has to be 
changed when these parameters change. 

 𝐶𝑇𝐸௡௔ௗ௜௥ and 𝐶𝑇𝐸௭௘௡௜௧௛: The coefficients of 
thermal expansion of the nadir and zenith face 
sheet material. These are considered to be two 
independent design variables. One could 
consider this situation to be relevant when the 
material of the two face sheets is coming from 
two different manufacturing batches or when the 
material appears to be not homogeneous. 

The fact that the 𝐶𝑇𝐸௡௔ௗ௜௥ and 𝐶𝑇𝐸௭௘௡௜௧௛ for the two 
face sheets are considered as independent 
variables implies that both variables can be in their 
opposite extremes (one at the smallest and one at 
its highest value in the variation range). This might 
lead to high ranges in deformation responses. 

The above list of design variables means that in 
total, nine stochastic design variables are used. All 
the other material and geometrical properties are 
kept at their nominal level. 

In Table 4 nominal or mean values of the stochastic 
design variables, that are used for the PANELSAT 
example, are presented. 

To find out what the impact is on the minimum and 
maximum tip-displacement due to random variation 
of the above listed stochastic design variables, both 
Monte Carlo Simulation is used as well the 2𝑘 ൅ 1 
PEM method.  

As is explained in section 2.2 care must be taken 
with selection of the size of the dispersion of the 
stochastic design variables when the 2𝑘 ൅ 1 PEM 
method is used. For this reason, different values of 
the dispersion of the stochastic design variables 
have been investigated. 

Table 4 Nominal values of stochastic design 
variables 

Design 
Variable 

Nominal/Mean 
value 

𝑡௡௔ௗ௜௥ 0.001 m 
𝑡௭௘௡௜௧௛ 0.001 m 
𝑘௖௢௥௘ 8.5 W/mK 
𝜀௡௔ௗ௜௥ 0.5 
𝜀௭௘௡௜௧௛ 0.8 
𝛼௡௔ௗ௜௥  0.5 
𝛼௭௘௡௜௧௛ 0.2 
𝐶𝑇𝐸௡௔ௗ௜௥  2.32E-5 m/m/K 
𝐶𝑇𝐸௭௘௡௜௧௛ 2.32E-5 m/m/K 

All the stochastic design variables are assumed to 
have a uniform probability distribution around the 
mean value that is considered to be equal to the 
nominal value. In this example, the dispersion is 
expressed as a percentage of the mean value. So 
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when a dispersion of 10% is indicated, it means that 
the lower-bound is at 90% of the mean values and 
upper-bound is at 110% of the mean value. 

The percentages of dispersion that are used are 
10%, 5%, 2.5% and 1.25% and are applied to all 
design variables simultaneously.  

3.2.4 Stochastic analyses 

For each of these dispersion values, the 2𝑘 ൅ 1 
PEM method is applied. The Monte Carlo simulation 
was run in parallel to act as a reference value for the 
estimates produced by the  2𝑘 ൅ 1 PEM method of 
the computed stochastic properties of the two 
responses: The minimum and maximum edge 
displacement. For the Monte Carlo simulations for 
each magnitude of dispersion 1800 analyses were 
executed. Within each MCS run, all nine stochastic 
variables were sampled. With both the Monte Carlo 
and the 2𝑘 ൅ 1 PEM method computed, the mean 
and standard deviation of the minimum and 
maximum tip-displacement are estimated and 
presented for the different dispersion levels in 
Figure 10 and Figure 11. 

 

Figure 10 Correlation of the mean for maximum 
and minimum tip displacement (with among others 

2 independent CTE design variables) 

 

Figure 11 Correlation of the standard deviation for 
maximum and minimum (with among others 2 

independent CTE design variables) 

From Figure 11 it can be observed that the curves 
for the standard deviations produced with the Monte 
Carlo runs appear to be linear functions of the 
dispersion. When the problem is not too non-linear, 
this is what would be expected. In this example all 

design variables appear only in a linear form in the 
response equations. It is therefore to be expected 
that standard deviation is proportional to the 
dispersion of the stochastic design variables. This 
gives confidence that an adequate amount of 
analyses were done with the Monte Carlo approach 
to produce this property and that therefore the 
results of these analyses can be used as reference 
to judge the quality of the estimates produced with 
the 2𝑘 ൅ 1 PEM method. 

What can be observed clearly from Figure 11 is that 
the curves of the standard deviation for the 2𝑘 ൅ 1 
PEM method do not have this linear behaviour and 
are even estimating for a dispersion of 10% a 
standard deviation of more than 4 cm for the 
maximum value of the tip-displacement. This is not 
a realistic value and also for a dispersion of 5% the 
produced standard deviation 9.5 mm is a non-
physical value. For the dispersion levels of 5% and 
10% it may well be that for this example for some of 
the design variables the dispersion level is too high. 

From Figure 10 can be observed as well that the 
mean values are also not well correlating. For the 
10% dispersion of the design variables, the mean 
and standard deviation for the tip displacements is 
numerically compared in Table 5. 

Table 5 Mean and standard deviation for minimum 
and maximum tip displacement for dispersion of 
10% with CTE parameters comparing the 2𝑘 ൅ 1 

PEM method and Monte Carlo (MCS) 
 min 

2𝑘 ൅ 1 
min 

MCS 
max 

2𝑘 ൅ 1 
max 
MCS 

𝜇 ‐2.565E‐03 ‐1.987E‐03 ‐7.721E‐04 4.454E‐04 
𝜎 9.191E‐03 4.297E‐03 4.112E‐02 4.112E‐03 

An additional interesting observation is that the 
mean and standard deviation of the MCS results do 
not match with the one of a fitted normal distribution 
(compare the mean and standard deviation in the 
column “min MCS of Table 5 with the values in 
Figure 12).  

 
Figure 12 Fitted normal distributions to minimum 

tip-displacements produced with the MCS method 
(with among others 2 independent CTE design 

variables) 

Also a level of skewness in the distribution of the 
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response values can be observed in Figure 12.  

Rosenblueth [1] indicates in his paper that his 
method requires that the distribution of the design 
variables shall have no skewness. This requirement 
is adhered to. However, it is not clear to what extent 
the skewness in the response distributions are 
responsible for the unrealistic values for the 
standard deviation. It is also not yet clear what is 
causing the skewness that is observed 

The question now is which design variables are 
causing these unrealistic values? 

To answer this question, use can be made of the 
coefficient of variation values 𝑉௡ the response due 
to variation of each individual parameter that have 
been calculated for the computation the standard 
deviation of the responses (see Equation (4)). In 
Table 6 these values are presented for the response 
of minimum and maximum tip-displacement for the 
case in which design variables have a 10% 
dispersion. 

Table 6 Coefficient of variation |𝑉௡| of the minimum 
and maximum tip displacement for dispersion of 

10% using the 2𝑘 ൅ 1 PEM method. 

Var 
# 

Design 
Variable 

|𝑉௡| for 
minimum 

|𝑉௡| for 
maximum 

1 𝑡௡௔ௗ௜௥ 2.40E-03 4.26E-02 
2 𝑡௭௘௡௜௧௛ 1.29E-03 3.51E-02 
3 𝑘௖௢௥௘ 5.57E-02 5.23E-02 
4 𝜀௡௔ௗ௜௥ 1.90E-03 2.12E-03 
5 𝜀௭௘௡௜௧௛ 4.14E-02 1.20E-01 
6 𝛼௡௔ௗ௜௥  1.68E-02 9.87E-02 
7 𝛼௭௘௡௜௧௛ 3.32E-03 1.45E-01 
8 𝐶𝑇𝐸௡௔ௗ௜௥  1.63E+00 7.15E+00 
9 𝐶𝑇𝐸௭௘௡௜௧௛ 1.67E+00 7.12E+00 

The results of Table 6 show that the CTE design 
variables have by far the highest values for the 
coefficients of variation and are therefore expected 
to be the driving parameters behind the excessively 
high standard deviations for the response of the tip-
displacement. There is therefore a high likelihood 
that the dispersion of these design variables are 
causing the 2𝑘 ൅ 1 PEM method estimate to be off. 
To have this confirmed a case with again a 
dispersion of 10% is run, but this time leaving out 
the design variables 𝐶𝑇𝐸௡௔ௗ௜௥ and 𝐶𝑇𝐸௭௘௡௜௧௛. Since 
for the 2𝑘 ൅ 1 PEM method all the 𝑌௡௠ and 𝑌௡௣ 
values are already available, it is quite 
straightforward to compute the estimates for the 
mean and standard deviation without the influence 
of the CTE design variables. It is however needed 
to rerun all the cases for the MCS analysis for the 
set of parameters without the CTE design variables. 

Table 7 Mean and standard deviation for minimum 
and maximum tip displacement for dispersion of 

10% without CTE parameters comparing the 2𝑘 ൅
1 PEM method and Monte Carlo (MCS) 

 min 
2𝑘 ൅ 1 

min 
MCS 

max 
2𝑘 ൅ 1 

max 
MCS 

𝜇 -1.252E-03 -1.256E-03 -1.931E-04 -1.947E-04 
𝜎  8.970E-05  9.154E-05  4.400E-05  4.426E-05 

In Table 7 the estimates for the mean and standard 
deviation are presented without the influence of the 
CTE parameters, but still with a dispersion level of 
10%. The results show that without the design 
variables 𝐶𝑇𝐸௡௔ௗ௜௥ and 𝐶𝑇𝐸௭௘௡௜௧௛, but maintaining 
the high dispersion of 10% for the remaining design 
variables the 2𝑘 ൅ 1 PEM method estimate is 
reproducing quite well the Monte Carlo results. 

Trying to fit again the data from the Monte Carlo 
simulation with a normal distribution it can be seen 
that the fitted normal distribution matches also well 
the stochastic properties of the Monte Carlo results 
(compare the mean and standard deviation in the 
column “min MCS of Table 7 with the values in 
Figure 13). Also no obvious sign of skewness in the 
response of the minimum tip-displacement is 
visible. 

 
Figure 13 Fitted normal distributions to minimum 

tip-displacements produced with the MCS method 
without CTE design variables 

So there is definitely something going on that is 
caused by the two CTE design variables.  

So far two independent design variables were 
considered for the CTE for the zenith and nadir face 
sheet. With a dispersion of 10%, it is possible to 
have sample combinations of both design variables 
that differ up to 20%. This is extremely high. It would 
imply a not so well controlled manufacturing 
process of the face sheets or the two face sheets 
are coming from two different material suppliers, 
which is quite rare. 

The choice of having two independent design 
variables for the CTE design variables also implies 
that bending of the panel can occur even when the 
panel has a uniform temperature. With a dispersion 
level of 10% for each of the CTE design variables, 
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this is most likely too much for the 2𝑘 ൅ 1 PEM 
method for the current example. 

From Figure 10 and Figure 11 it can be learned that 
when the dispersion levels are reduced in 
magnitude the deviation between the MCS and 
2𝑘 ൅ 1 PEM method is also significantly reduced to 
a level that could be considered acceptable for a 
dispersion of 2.5%. 

It must be noted that for this example case the 
structure is subjected to more than 60 degree of 
temperature variation relative to the reference 
temperature. The high temperature excursion is 
likely to amplify the effect of CTE difference in top 
and bottom face sheet. 

The above consideration have led to the hypothesis 
that with a single CTE design variable for the both 
the zenith and nadir face sheet above observed 
problems with the results would be reduced. To 
verify this hypothesis, a dedicated analysis with a 
10% dispersion level for all design variables is again 
run. This time 𝐶𝑇𝐸௡௔ௗ௜௥ and 𝐶𝑇𝐸௭௘௡௜௧௛ are one to one 
correlated and have in each analysis the same 
value. This implies that there are now 8 instead of 9 
independent design variables. For the 2𝑘 ൅ 1 PEM 
method this means that only 17 analysis runs have 
to be performed. The MCS is also repeated with 
1800 runs, sampling values for the 8 design 
variables.  

In Table 8 the mean and standard deviation are 
compared with for both the MCS and 2𝑘 ൅ 1 PEM 
method. This case there is almost perfect 
correspondence between both methods.  

Table 8 Mean and standard deviation comparing 
the 2𝑘 ൅ 1 PEM method and Monte Carlo (MCS) 
for minimum and maximum tip displacement for 

dispersion of 10% with a single CTE design 
variable associated to top and bottom face sheet  
 min 

2𝑘 ൅ 1 
min 

MCS 
max 

2𝑘 ൅ 1 
max 
MCS 

𝜇 -1.252E-03 -1.256E-03 -1.925E-04 -1.930E-04 
𝜎 1.115E-04 1.224E-04 4.489E-05 6.745E-05 

Trying to fit again the data from the Monte Carlo 
simulation with a normal distribution it can be seen 
that the fitted normal distribution matches well the 
stochastic properties of the Monte Carlo results 
(compare the mean and standard deviation in the 
column “min MCS of Table 8 with the values in 
Figure 14). A slight trace skewness may be 
observed. This may also be caused by the “just” 
1800 result values. 

 
Figure 14 Fitted normal distributions to minimum 

tip-displacements produced with the MCS method 
with a single CTE design variable 

3.2.5 Concluding remarks on the example  

This example shows the strength of the 2𝑘 ൅ 1 PEM 
method compared to the Monte Carlo Simulation 
method. Instead of the 1800 simulation runs for the 
Monte Carlo simulation only 17 cases for the 8 
design variables are sufficient to accurately 
reproduce the results. Even when the 17 cases 
have to be repeated, the number of analysis cases 
is still manageable with a little effort. The example 
showed that limitations of the method can be 
reached and how this can be detected. 

In this example it was quite obvious that the 
dispersion level of two of the design parameters was 
affecting the quality of the estimates for the mean 
and the standard deviation of the responses. It 
might not always be that obvious. In this case the 
Monte Carlo Simulation results were available for 
reference and showed a proportional relation 
between the standard deviation of the responses 
and the standard deviation of the input variables.  

When no reference MCS results are available, the 
proportionality verification, as a way to verify the 
validity of the dispersion value, has then to be 
performed by generating additional results with the 
 2𝑘 ൅ 1 PEM method. These results are obtained 
through an extra set of runs in which the dispersion 
levels of the design variables are scaled by a factor 
2 or 0.5. The corresponding estimates of the 
standard deviation of the responses should then 
show the same scaling factor. If this proportionality 
is not demonstrated, then the values of the 
coefficients of variation for the different design 
variables (for instance a list similar to Table 6) may 
help to identify which of the design variables may be 
causing the problem. 

The experience with the 2𝑘 ൅ 1 PEM method for 
thermoelastic problems in the space industry is still 
quite limited. Further application of the method will 
extend the experience and will provide more 
guidelines on the use of the method. 
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4 CONCLUSION AND RECOMMENDATIONS 

At the moment, there is no ECSS handbook 
providing guidelines for thermoelastic verification 
and consequently also none on the treatment of 
uncertainties in thermoelastic predictions. 

The 2𝑘 ൅ 1 PEM method offers the potential to 
obtain the uncertainty in the responses with a 
strongly reduced computational effort. As an 
example running uncertainty analysis on a full 
spacecraft with 50 design variables would require 
“only” 101 analysis runs. This would be a more 
feasible number compared to thousands of runs that 
would be needed with the Monte Carlo Simulation 
method. 

A nice side product of the method are the 
coefficients of variation of the response for each 
design variable. These coefficients can be 
considered a measure of the sensitivity of the 
response variables with respect to the design 
variables. Furthermore, it requires only two 
additional runs to get the coefficients of variation 
when the sensitivity information for an extra design 
variable is needed. In comparison, the Monte Carlo 
Simulation method would require, probably, several 
hundreds of extra analyses.  

The method has limitations that were faced on the 
second example in this paper. One of the limitations 
of the 2𝑘 ൅ 1 PEM method that was already 
indicated by Rosenblueth is that the dispersion of 
the design variables shall not be too large. A way to 
check this is to verify whether the standard deviation 
of the response variable is proportional to the 
standard deviation of the design variables. 

The examples presented in this paper are relatively 
small. More experience with more complex models 
is to be gained with this method. The authors hope 
that this paper inspires the community to try the 
method as well and share their findings. In this way 
the application of the method can develop to a 
mature method that can complement the approach 
of factors of safety.  

5 ACRONYMS AND ABREVIATIONS 

CPT Centre Point Temperature interpolation 
method 

FPA Focal plane assembly 
MCS Monte Carlo Simulation 
PAT Prescribed Average Temperature 

interpolation method 
PEM Point Estimate Method 
SC Spacecraft 
TE Thermoelastic 
TN Thermal node 
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